
Phase mapping of ultrashort pulses in bimodal photonic structures:
A window on local group velocity dispersion

H. Gersen,1,* E. M. H. P. van Dijk,1 J. P. Korterik,1 N. F. van Hulst,1 and L. Kuipers1,2

1Department of Science & Technology, Applied Optics Group, andMESA+ Research Institute, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

2FOM-Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
(Received 20 January 2004; published 8 December 2004)

The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied
with a time-resolved photon scanning tunneling microscope(PSTM). When waveguide modes overlap in time
intriguing phase patterns are observed. Phase singularities, arising from interference between different modes,
are normally expected at equidistant intervals determined by the difference in effective index for the two
modes. However, in the pulsed experiments the distance between individual singularities is found to change not
only within one measurement frame, but even depends strongly on the reference time. To understand this
observation it is necessary to take into account that the actual pulses generating the interference signal change
shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase
singularities contains direct information on local dispersion characteristics. At the same time also the mode
profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly
measured. The combination of these parameters with an analytical model for the time-resolved PSTM mea-
surements shows that the unique spatial phase information indeed gives a direct measure for the group velocity
dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse
spreading, and pulse reshaping become accessible in a local measurement.
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I. INTRODUCTION

Dispersion is the phenomenon that the refractive index of
a medium varies with frequency[1]. Vacuum exhibits no
dispersion, so that the phase velocity and the group velocity
of a wave packet centered at frequencyv are both constant
and equal toc. In all other optical media, the presence of
resonances modifies this dispersion relation so that the phase
and group velocities are different, even in regions far away
from resonance[2]. An important consequence is that both
velocities are functions of frequency, having the effect that a
short optical pulse changes shape as it propagates[2,3].

Besides the material properties, dispersion is also influ-
enced by interference of waves in periodic and waveguiding
structures. As the dispersion depends on the periodicity in
the structure it can therefore be tuned over a wide range,
including regions of negative dispersion[2]. Recently, pho-
tonic crystals(PhC’s) have shown that the dispersion relation
itself can be engineered in a unique fashion[4]. PhC’s are
periodic optical structures on the length scale of the electro-
magnetic wavelength aimed at controlling the generation and
propagation of light[5]. PhC’s are extremely attractive for
integrated optical circuits as different functionalities can sim-
ply be introduced by modifying the local symmetry and ge-
ometry of the PhC lattice[6]. This corresponds to a modifi-
cation of the photon dispersion relation and ultimately leads
to tailoring of group velocity dispersion(GVD), photonic
band gaps, and localized states.

Direct determination of the GVD of an optical pulse
propagating in a PhC device is crucial to the demonstration
of useful dispersive properties of PhC devices. So far, many
investigations on dynamical effects in(non)linear dispersive
media are based on numerical simulations[7–10]. However,
experimental verification of the dispersive properties of
PhC’s is still a difficult and demanding issue. Several groups
have indirectly extracted the dispersive properties from the
phase of Fabry-Perot oscillations between a PhC section and
sample facets(which are superimposed on emission spectra
from their samples) [11–13]. Time-resolved experiments
have been reported which give insight into the group velocity
upon propagation through two-dimensional(2D) photonic
crystal waveguides either by optical Kerr gating[14] or by a
cross-correlation method[15]. These methods, however, in-
tegrate all the pulse propagation effects accumulated along
the entire structure. If a structure has spatially varying optical
properties, only averaged information is obtained. By cutting
slices from the medium(“cut-back” method), it becomes
possible to study aspects of the internal pulse development
[16]; yet this method is destructive and it is obvious that a
photonic structure as a PhC cannot be arbitrarily changed in
length without affecting its properties. Furthermore, if a dis-
agreement is found between experiment and theory it may be
hard to find the underlying cause for the discrepancy. To
overcome these drawbacks and obtain fulllocal information
on pulse propagation throughout a medium, local time-
resolved measurements are crucial.

In the last years, near-field scanning optical microscopy
(NSOM) has proven to be a powerful method to analyze
local electromagnetic field distributions in fabricated nano-
photonic structures[17–23]. It has been demonstrated that
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the combination of NSOM with coherent methods yields the
amplitude and phase distribution of the optical field locally
inside the structure[24–28]. Extension of this approach to-
wards femtosecond pulses enables the observation of dy-
namical effects directly inside a photonic structure as we
recently have demonstrated[29,30].

Here, we report on the nondestructive visualization of
pulses as they propagate through bi-modal photonic struc-
tures at infrared wavelengths. Unlike most measurements
which reconstruct the group velocity from interferometric
measurement, we directly measure the phase and group ve-
locity for individual modes locally inside the waveguide.
When the waveguide modes overlap in time, unexpected
phase patterns are observed. Phase singularities were ex-
pected at equidistant intervals determined by the difference
in effective index for the two modes. However, we observe
that the distance between individual singularities not only
changes within one measurement frame, but also depends
strongly on the reference time. It is necessary to take into
account the fact that the actual pulses generating the interfer-
ence signal are no longer Fourier limited due to changes in
shape resulting from propagation through the dispersive me-
dia. Consequently, it is expected that the location of phase
singularities yields direct information on the local dispersion
characteristics. In the following, we will show how the
spatial distribution of phase singularities allows the retrieval
of the GVD for the individual modes by means of an ana-
lytical model of the time-resolved photon scanning tunnel-
ing microscope (PSTM) measurements[30]. With this
method propagation effects, such as pulse compression,
pulse spreading, and pulse reshaping, become accessible in a
local measurement.

II. EXPERIMENTAL ASPECTS

Near-field optics provides a powerful method to circum-
vent the diffraction limit [31]. Instead of imaging with a
system of lenses, a glass fiber with a subwavelength sized
end facet can be used to probe the light fields close to a
sample surface. By making the distance between fiber probe
and sample much smaller then the wavelength of light(typi-
cally ,10 nm), nonpropagating light fields that are bound to
the sample surface can be detected as schematically depicted
in Fig. 1. These “evanescent” fields decay in magnitude
within a fraction of the wavelength when moving away from
the surface, and carry information about sample features
smaller than the value set by the diffraction limit. Owing to
their nonpropagating character, evanescent fields can only be
detected by a local probe immersed into the near-field of the
sample[32]. The evanescent field is locally converted into a
propagating wave, which is coupled into the fiber probe,
guided through the fiber and subsequently detected. The cor-
responding experimental device is called a near-field optical
microscope in collection mode, hereafter called a photon
scanning tunneling microscope(PSTM).

Interferometric detection of the optical signal from the
fiber probe provides an additional source of information by
providing access to both the amplitude and phase of the
probed field[24,27,28]. The photon tunneling signal picked

up by the near-field probe at each position on the sample
surface is interferometrically mixed with light split from the
same laser source that has propagated along the reference
branch of the setup(Fig. 1). Heterodyne detection of the
interference signal, established by acousto-optical modula-
tion in the reference branch, then enables a separation of
amplitude and phase information by a dual-output lock-in
amplifier (LIA ) [27]. As the phase and time information of
the evanescent field, at each position on the sample, is the
same as that of the propagating wave we obtain direct infor-
mation on the propagating light field.

To visualize dynamic effects, we launch femtosecond
pulsessl=1300±2 nmd, generated by a Ti:sapphire-pumped
optical parametric oscillator(Spectra-Physics Opal), into our
model system. The arrival times12.5 nsd between subse-
quent laser pulses is long enough so that the pulse picked up
by the probe can only interfere with part of the same laser
pulse that has propagated along the reference branch. The

pulse duration of the input fieldẼstd is measured by a con-
ventional background free intensity autocorrelation tech-
nique and yields a full width at half maximum(FWHM) of
the pulse amplitude of 123±3 fs[3]. Note that when using
ultrashort pulses optical interference will only occur when
temporal overlap exists between the pulse in the signal and

FIG. 1. (Color) Schematic representation of a pulse tracking
experiment. The evanescent field of the pulse traveling inside a
waveguide is picked up by a fiber probe with subwavelength dimen-
sions. The photon tunneling signal picked up by the probe is inter-
ferometrically mixed with part of the same pulse that has propa-
gated through the reference branch. The length of the reference
branch, and thus the time that it takes the reference pulse to travel
through this branch, is controlled by an optical delay line. Each
subsequent measurement shown in this paper is obtained by raster
scanning the optical probe across the photonic structure while the
height above the structures,10 nmd is kept constant by a feedback
mechanism. The simultaneous measurement of optics and topogra-
phy makes it possible to directly relate optical information to the
structural properties.
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the pulse in the reference branch at the point where the
branches are brought together. An optical delay line in the
reference branch completes the pulse tracking setup. Basi-
cally the position of the optical delay line determines the
length of the reference branch and thus defines a reference
time for the measurement. More details regarding the experi-
mental setup1 can be found elsewhere[27,30].

As a model system for our measurements we have used a
Si3N4 planar channel waveguide fabricated in a Si3N4/SiO2
layer system on a Si substrate. The experimentally deter-
mined slab thickness, width, and height of the structure are
170±5 nm, 3.1±0.1mm, and 39±3 nm, respectively. Lin-
early polarized light has been coupled into the channel wave-
guide with a polarization parallel to the sample plane, such
that the TE00 and TE01 mode are excited. These are the only
two TE polarized modes supported by the waveguide for the
measured waveguide parameters, as determined by an effec-
tive index method. The TM polarized mode, which is in prin-
ciple supported by the waveguide, is not excited. All mea-
surements are performed at a distance of 12±0.5 mm away
from the incoupling facet. All data collection has been per-
formed by raster scanning an uncoated fiber probe while
keeping the probe-sample distance constant with the fast axis
along the waveguide channel(line frequency=0.098 Hz),
with a fixed position of the optical delay line in the reference
branch for each image.

III. PULSE TRACKING IN A BIMODAL WAVEGUIDE

A local time resolved heterodyne interference measure-
ment on a bimodal waveguide is presented in Fig. 2 for a
fixed position of the optical delay line. Figure 2(a) shows the
topography, which is collected simultaneously with the opti-
cal information. The detected LIA signal is proportional to
the measured optical amplitudesAd times the cosine of the
phase of the optical interference signalscosFd. From this
measurement the optical amplitude and the cosine of the
phase of the optical signal can be separated, as presented in
Figs. 2(b) and 2(c), respectively[27].

The amplitude in Fig. 2(b) shows a roughly Gaussian
shape with a clear spatial beating pattern at the pulse front.
The appearance of this beating is easily explained by the fact
that the TE00 and TE01 modes have different propagation
constants leading to a spatial mode beat. A Fourier transform
of the A cosF signal along the waveguide, as given in Fig.
3(a), reveals a periodicity of the fringes of 858±3 nm and
875±5 nm corresponding to the TE00 and TE01 modes, re-
spectively. These measured wavelengths inside the structure
immediately yield the phase velocity of the light in the wave-
guide and thus the effective indices of refraction. In this way
we obtain effective indices of 1.52±0.02 and 1.49±0.03 for
the TE00 and TE01 modes, respectively. These values are in

reasonable agreement with the calculated values of 1.56 and
1.53. The slight difference in accuracy between the experi-
mental values results from the large difference in the ampli-
tudes of the TE00 and TE01 modes.

In the optical amplitude in Fig. 2(b) it is visible that the
beating pattern occurs only towards the right side of the im-
age. An inverse Fourier transform of the relevant peaks of
the Fourier spectra for the individual modes yields the am-
plitude for the TE00 and TE01 modes as given in Figs. 2(d)
and 2(e), respectively. We observe that the TE01 mode is in
front of the TE00 mode. This separation results from the fact
that different modes in a photonic structure have different
group velocities. The origin of the fact that the TE01 is found
to have a larger group velocity can be found in the fact that
this mode is further extended into the air and therefore has a
larger group velocity.

From the Fourier filtered amplitudes presented in Figs.
2(d) and 2(e) we can directly retrieve the mode profiles, as
depicted in Fig. 3(b). Figure 3(c) shows the simultaneously
obtained topography information along such a cross section.
The arrows in Fig. 3(b) indicate the FWHM for the indi-
vidual mode profiles, which are 2.08±0.07mm and
4.00±0.12mm for the TE00 and TE01 modes, respectively.
The maximum amplitude of the TE00 mode is 11.8±0.5
times higher than the amplitude of the TE01 mode. Further-
more, a line trace along the waveguide for the individual
modes shows the shape of the pulses, as depicted in Fig.
3(d). Fitting a Gaussian distribution, as shown by the black
and red line, yields a pulse length as 58.9±0.6mm and
70.6±7.1mm for the TE00 and TE01 modes, respectively.
Obtaining an accurate fit for the TE01 mode for this specific
measurement is difficult due to the relatively low optical
amplitude of this signal that results in a relatively low signal
to noise ratio. Nevertheless, the presented Fourier filtered
amplitude data clearly demonstrate that all relevant param-
eters for the optical amplitude of an individual mode can still
be retrieved.

In Figs. 4(b)–4(j) the measured optical amplitudes on the
waveguide depicted in Fig. 4(a) are shown for nine subse-
quent measurements with increasing reference times. Be-
tween each measurement, the reference time is shifted
200±2 fs by lengthening the reference branch by
60.0±0.6mm. For each reference time a similar pattern as in
Fig. 2(b) is found, but further along the waveguide. Note that
the beating between the two modes prevents a pinpointing of
the position of the individual pulses directly in these images
[29,30]. However, by applying a Fourier filter to the raw data
for the entire time sequence, we can separate the contribution
of the TE00 mode in time as depicted in Fig. 5. The linear
dependence of the position of the pulse in the waveguide as
a function of the reference time yields a group velocity of
1.46±0.043108 m/s.

A similar approach for the TE01 yields a lower group ve-
locity than for the TE00 mode, which is obviously not cor-
rect. It turns out that the reduced spatial resolution used to
obtain the time sequence results in a reduced spectral sepa-
ration of the modes. As a result a large part of the TE00 mode
is mixed in the TE01 amplitude, which makes the determina-
tion of the group velocity for the TE01 mode inaccurate.
However, we know that upon propagation of 12±0.5 mm

1In the current experiment the optical powers in the signal and
reference branch are approximately 1 nW and 1mW. As a result we
operate several orders of magnitude above the detection limit of the
instrument. More details regarding experimental sensitivity and re-
lated issues are beyond the scope of this paper and will be published
elsewhere.

PHASE MAPPING OF ULTRASHORT PULSES IN… PHYSICAL REVIEW E 70, 066609(2004)

066609-3



through the waveguide the modes are separated only by
83±5 mm. As a result we have a direct measure for theDvg
between the two modes. Therefore the average group veloc-
ity for the TE01 mode is estimated to be 1.47±0.04
3108 m/s, which is 0.7% larger than the measured speed of
the TE00 mode. Note, however, that the value for the TE01
mode is an averaged value for the whole waveguide from
incoupling to the pulse position and not a locally determined
velocity.

The observed beating pattern as is visible in Fig. 2(b)
leads to several interesting effects. For example, a closer
look at the optical phase presented in Fig. 2(c) reveals phase
singularities at positions where the field amplitude vanishes
in Fig. 2(b), as indicated by the arrows in Fig. 2(c). The
vanishing optical amplitude at these positions is a direct re-
sult of the interference between the TE00 and TE01 modes in

the waveguide. At positions with equal amplitude, but oppo-
site phase, these two modes give rise to destructive interfer-
ence explaining the appearance of the singularities[25]. Sin-
gularities with a topological charge of +1 are observed on
one side of the red dotted line in Fig. 2(c), while at the other
side a charge of −1 is found. Note that the assignment of the
sign of the topological charge for this geometry is arbitrary,
but it needs to be opposite for singularities that are each
other’s mirror image. The two interfering modes both consist
of a two-dimensional Gaussian-Hermitian distribution as is
visible in Figs. 3(b) and 3(d) for the directions perpendicular
to and along the waveguide, respectively. Be aware that the
absolute amplitude for the TE01 is depicted in Fig. 3(b), so
that the normal peak-dip shape of the first order mode shows
up as two peaks. By using these two-dimensional distribu-
tions it is easily understood why the singularities move to-

FIG. 2. (Color) A time resolved heterodyne interference PSTM measurement on a bimodal Si3N4 channel waveguide for a fixed position
of the optical delay(image size: 253.8310.2mm2). Linear polarized light has been coupled in the waveguide such that only the TE00 and
TE01 modes are excited.(a) The topography of the waveguide. The measured height and width of the waveguide are 39±3 nm, and
3.1±0.1mm. The slab thickness is determined to be 170±5 nm.(b) The optical amplitude of the pulse while propagating through the
waveguide as derived from the measured LIA signal as a function of the lateral position in the plane of the sample. It is apparent that the
amplitude is confined to the waveguide. A clear beating pattern due to multiple propagating modes is observed at the right side of the image.
(c) The corresponding cosF of the optical interference. The red dotted line depicts the center of the waveguide. As a result of the beating
between different modes phase singularities occur at the position of zero amplitude. These singularities consist of pairs with opposite
topological charge(indicated by arrows). It is striking to observe that the distance between the singularities is not constant, in sharp contrast
to measurements performed with continuous wavelength laser sources.(d) The optical amplitude of the TE00 as retrieved from the LIA data
through Fourier filtering.(e) Optical amplitude of the TE01 mode. We observe that the TE01 is clearly in front of the TE00 mode, which
demonstrates that the TE01 mode travels faster in the waveguide structure.
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wards the center of the waveguide as indicated by the red
dotted line in Fig. 2(c). This is schematically illustrated in
Fig. 6(a) by depicting the amplitude of both a TE00 and TE01
mode in an isoline representation. Positions where the am-
plitude of both modes is equal are indicated by the red lines
which clearly move towards the center of the waveguide.
The first requirement for singularities is that they only occur
at location of equal amplitude. As a result the singularities
clearly move towards the center of the waveguide.

The other requirement for a singularity is that the inter-
fering waves have opposite phase. This is schematically il-
lustrated for a Fourier limited pulse, which has a single car-
rier wavelength in Fig. 6(b). Depicted are lines where the
phase for the modes is 0(solid lines) and p (dotted lines).
Green is used for the TE00 mode, while blue represents the
TE01 mode which has a longer wavelength. Note that at the
center of the waveguide, depicted by the black line, a phase
jump of p occurs for the TE01. At regular intervals the dotted
and solid lines for the respective modes coincide, as indi-
cated by the depicted arrows, representing lines of opposite
phase. By depicting schematically the red line from Fig. 6(a)
for locations of equal amplitude in this figure, we see that the
crosses define a location where both requirements for the
occurrence of a phase singularity are met. It is important to
realize that in discussing the phase singularities the ampli-
tude and phase information can be considered separately.
Along a line of opposite phase we just have to look for a
location where the amplitudes are equal.

Based on the explanation given in Fig. 6 the phase singu-
larities might be expected at equidistant intervals determined
by the difference in effective index for the two modes. It is
therefore striking to observe that the distance between indi-
vidual singularities is not constant in the measured data as
can be seen in Fig. 2(c). This is shown in more detail in Fig.

7, where the distance between subsequent phase singularities
is plotted as a function of the reference time. In this graph,
the letter assignment corresponds to the images presented in
Fig. 4. On the horizontal axis the number of a singularity is
plotted. In this the first singularity visible in Fig. 4(b), as
indicated by the arrow, is used as the reference point and
numbered as 1. Note that for subsequent singularities the
phase difference between the two modes increases or de-
creases byp. Based on the measured center wavelengths of
858±3 nm and 875±5 nm for the TE00 and TE01 a phase
singularity separation of 22mm is therefore expected.
Clearly, separations that are both longer and shorter than
22 mm are observed in the measurement. From Fig. 7 it is
clear that the distance between individual singularities not
only changes within one measurement frame, but also de-
pends strongly on the reference time. These effects are in
sharp contrast with results obtained for continuous wave-
length sources where these distances are only determined by
the effective wavelengths of the modes and therefore con-
stant[25]. The difference is directly related to the observa-
tion of the propagation of ultrashort pulses with a resulting
finite bandwidth. Pulses experience group velocity dispersion
(GVD) upon propagation through a dispersive medium
which is the origin of this observation.

IV. EFFECT OF DISPERSION

To understand the observed beating patterns we have to
account for pulses with a finite bandwidth. In the case of a
Fourier limited pulse only the central wavelength would con-
tribute to the interference. As a result regularly spaced sin-
gularities would be observed which is clearly not the case.
We need to take into account the fact that the actual pulses
generating the interference signal are no longer Fourier lim-

FIG. 3. (Color) (a) A Fourier transform of theA cosF signal along the waveguide. The positions of the maxima immediately yield the
phase velocity for the respective modes and hence the effective indices of 1.52±0.02 and 1.49±0.03 for the TE00 and TE01 modes,
respectively. Note that the TE01 is very weak compared to the TE00 mode.(b) The mode profile for each individual mode measured by taking
a cross section through the waveguide at the maximum amplitude of the individual modes in Figs. 2(d) and 2(e), respectively.(c) The
simultaneously acquired topography along such a cross section.(d) A line trace along the waveguide which shows the pulse shape for the
respective modes. The FWHM of the pulse profile is determined by the GVD in both the signal and reference branch. Fitting a Gaussian line
shape(black and red line) for the respective modes therefore allows a retrieval of the difference in GVD between the two modes.
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ited due to changes in shape resulting from propagation
through a dispersive medium. Consequently, it might be ex-
pected that the measurement of the phase singularities yields
direct information on the local dispersion characteristics. In
the following, we will show how this allows the retrieval of
the GVD for the individual modes by means of a refinement
of our analytical model of the time-resolved PSTM measure-
ments[30].

The standard way in which dispersion is measured is via
interferometry[3]. In interferometry, the “dispersive” system
of which the dispersion is to be measured is placed in one
arm of the interferometer exactly as in the time resolved
experiments presented in this paper. By dispersive in this
context we mean any linear system in which the propagation
constantbsvd is a function of frequency. It is assumed that
the dispersive effects are adequately described in terms of
phase and group velocity and the group velocity dispersion.
Thereforebsvd is written as a second order Taylor expansion
about its value atv0 with the derivativesb8;db /dv and
b9;d2b /dv2 evaluated atv=v0.

This bsvd, which defines the dispersion characteristics for
a mode, is exactly the property we would like to measure

locally. Quite naturally we can writevgsv0d;1/b8sv0d and
vf;v0/bsv0d for the locally measured group and phase ve-
locity, respectively. We recently published an analytical
model to interpret the results obtained with a time-resolved
PSTM in the case of single mode propagation[30]. By ex-
tending this model we will show how the different GVD of
the individual modes can be retrieved from the observed
beating pattern.

A Gaussian light pulse after traveling an arbitrary distance
z through a dispersive medium can be written as[3,30]

Ẽsz,td =ÎG̃szd

G̃0

expFiv0St −
z

vf
D − G̃szdSt −

z

vg
D2G ,

s1d

where the pulse propagation parameterG̃=a− ib is related to
the pulse width through the parametera, while the parameter
b is a measure for the frequency chirp on the pulse. The input

FIG. 4. (Color) Pulse tracking experi-
ment for different reference times. Lin-
ear polarized light has been coupled in
the waveguide to excite the TE00 and
TE01 modes. (a) The simultaneously
measured topography (image size:
253.8310.2mm2). [(b)–(j)] The optical
field amplitude as measured by the in-
strument for nine different positions of
the optical delay line. From(b)–(j) the
optical path length of the reference
branch is increased in steps of
60±0.6mm. This results in steps of the
reference time of 200±2 fs. For each
frame a similar pattern as in Fig. 2(b) is
found, but further along the waveguide.
Note that the occurrence of a beating be-
tween the modes prevents direct pin-
pointing of the position of the individual
pulses in these images.

GERSENet al. PHYSICAL REVIEW E 70, 066609(2004)

066609-6



pulse parameterG̃0 is related to the initial pulse durationtp

=f2 lns2d /ag1/2, while b=0 as we use unchirped Fourier lim-

ited input pulsessG̃0PRd. Upon propagation through a dis-
persive medium of lengthz the output pulse is still a Gauss-
ian pulse, but the pulse propagation parameterGszd is

changed as 1/G̃szd=1/G̃0+2ib9z due to the GVD. From Eq.
(1) it is clear that the carrier frequency within the pulse
propagates at the phase velocityvf, while the pulse envelope
itself propagates at the group velocityvg evaluated at the
center of the pulse spectrum. The pulse envelope changes in
shape with distance and develops a chirp due to the GVD.

The time-resolved PSTM is considered as a Mach-
Zehnder type interferometer with heterodyne detection as

schematically shown in Fig. 8. The input fieldẼstd, assuming

an unchirped input pulsesG̃0PRd, is split by the beam split-
ter into fields that travel through the two arms of the inter-

ferometer. The field through the sample is designatedẼssz,td,
and the delayed field through the reference branch is called

Ẽrst−td. Thez dependence is explicitly included to represent
the fact that the near-field probe is moving along the sample
and thus includes additional dispersive medium as a function
of position, whilet represents the optical delay through air in
the reference branch in the usual fashion. Note that the in-
clusion of additional dispersive medium as a function of the
probe movement is the crucial difference with conventional
phase sensitive time-resolved interferometry where the delay
line moves in vacuum[3,33,34].

By using Eq.(1) for a pulse propagating through the dis-
persive media in the respective branches of the interferom-
eter, we obtained for the measured LIA signal[30]

V1szs,td ~ AE
−`

`

expf− Grst − jrd2 − Gsst − jsd2g

3coshY + krGrst − jrd2 + ksGsst − jsd2jdt,

s2ad

where

kr = 2br9zrG0; ks = − 2bs9zsG0,

Gr =
G0

1 + skrd2 ; Gs =
G0

1 + sksd2 , s2bd

A =
ArAs

ÎG0

Î4GrGs,

jr = t +
zr

vgr
; js =

zs

vgs
,

and

Y = −
arctanskrd + arctansksd

2
− v0St +

zr

vfr
−

zs

vfs
D .

s2cd

Here, theA corresponds to an amplitude withAi constants
that are proportional to the different optical power density in
the two branches,Gi corresponds to the real part of a modi-
fied pulse propagation parameter,ji represents an optical
path length,ki is a GVD dependent parameter, andY is
simply a time-independent variable in the optical phase. The
subscripti denotes the reference and signal branches, respec-

FIG. 5. (Color) The optical amplitude
for the TE00 mode as derived by apply-
ing a Fourier filter on the raw data of
Figs. 4(d)–4(j). This result shows that
the position of the TE00 pulse at a refer-
ence time can be pinpointed in space.
The pulses can be seen to propagate
through the structure as a function of
time giving a direct local measurement
of the group velocity for this mode. By
determining the “center of mass” for
each frame a local value of the group
velocity vg for the pulse of 1.46±0.04
3108 m/s is found.
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tively. Thezi represents the total length of dispersive medium
in either branch.

In our case different dispersive media are present in the
respective branches of the interferometer. Although not writ-
ten down explicitly, this is included in the model by multi-
plying the original spectrum with the different frequency de-
pendent propagation constants for the respective media. The
result is simply a summation over the different propagation
constants. By solving integral equation(2a), we obtain the
following expressions for the amplitude and phase of the
interference signal as it is measured by the time-resolved
PSTM [30]:

Aszs,td =
ArAs

Îp/G0

Î44 + skr + ksd2
expF− 2G0sjr − jsd2

4 + skr + ksd2 G , s3d

and

Fszs,td = Y +
1

2
arctanHGrkr + Gsks

Gr + Gs
J

− HG0sjr − jsd2fkr + ksg
4 + skr + ksd2 J , s4d

where the variables with the subscripts are the ones that
change as a function of the position of the probe. In the

experiment onlyzs and t are varied. However, the optical
delay line is kept at a fixed position for each individual mea-
surement, so thatt is in fact constant(both jr andY depend
on t).

With Eqs.(3) and(4), we have analytical expressions for
both the measured pulse phase and amplitude as a function
of position for the case of single mode behavior. For the case
of multimode devices the present model has to be extended
to incorporate multimode propagation to fully understand the
results measured with the time-resolved PSTM. This is done
by replacing the electromagnetic field in the sample branch

Ẽsstd by a summation over independent orthogonal modes. It
is then straightforward to show that the integral in Eq.(2a) is
transformed into

V1szs,td ~ ArE
−`

`

o
n=0

n=N
Asn

ÎG0

Î4GrGsnexpf− Grst − jrd2

− Gsnst − jsnd2gcoshYn + krGrst − jrd2

+ ksnGsnst − jsnd2jdt. s5d

Here, then represents the mode number whileN defines the
total number of modes present. The variables with the sub-
script sn are defined corresponding to the definitions in Eq.

FIG. 6. (Color) (a) Schematic draw-
ing of the amplitude of both a TE00 and a
TE01 mode in an isoline representation.
Positions where the amplitude for both
modes is equal are indicated by the red
lines. Singularities can only occur at lo-
cations where the amplitude is equal.
Therefore it is clear that singularities
move to the center of the waveguide.(b)
For a Fourier limited pulse the two inter-
fering modes consist of two discrete pe-
riods. Green is used for the TE00 mode,
while blue represents the TE01 mode
which has a longer wavelength. Depicted
are lines where the phase for the modes
is 0 (solid lines) and p (dotted lines).
Note that at the center of the waveguide,
depicted by the black line, a phase jump
of p occurs for the TE01 mode. At regu-
lar intervals the dotted and solid lines for
the respective modes coincide, as indi-
cated by the depicted arrows, represent-
ing lines of opposite phase. Depicting
the red line for locations of equal abso-
lute amplitude shows that a phase singu-
larity will occur at the locations indi-
cated by the crosses. Note that the phase
singularities occur at equidistant inter-
vals when the phase differenceDF be-
tween the modes is equal top.
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(2b) for each individual mode separately. The single integral
in Eq. (2a) is replaced by an integration over a sum of or-
thogonal modes. As integrating is a linear operation the se-
quence of integrating and summation can be interchanged for
the typically continuous functions representing electrical
fields. Therefore we can solve the integral for each individual
mode and subsequently perform a coherent summation over

all solutions. In other words: we can use the equations for the
amplitude and optical phase as given in Eqs.(3) and (4) for
each individual mode. A coherent summation over the solu-
tions for all modes present in the photonic structure using
these equations will subsequently give the solution for the
resulting optical amplitude and phase as observed by the
time-resolved PSTM.

V. RETRIEVAL OF THE GVD FOR INDIVIDUAL MODES
IN BIMODAL STRUCTURES

In this section we will use the presented analytical model
to show how the local GVD for individual modes can be
retrieved from the experimental data. In the experiment the
photon-tunneling signal and the reference signal recombine
in a 50/50 fiber coupler after propagating through different
lengths of single mode fibers and other bulk optical glass
components. The pulse in the signal branch travels
12±0.5 mm through the sample and 68.5±0.5 cm through
dispersive fibers and other glass components, and
23.5±0.2 cm through air. For the reference branch these dis-
tances are 38.5±0.5 cm and 75.6±0.5 cm for the air and
dispersive materials, respectively. Note that in the reference
branch the path length in air can be changed as a function of
the position of the optical delay line[delayt, Eq. (2)], while
in the sample arm the length of the(dispersive) samplezs
changes as a function of the probe position.

In order to detect the interference signal the optical path
lengths in the respective branches have to be made equal.
Therefore the fiber length differenceDzfiber between the
branches is balanced by adding an extra air pathDzair in the
reference branch of the interferometer as depicted in Fig. 8.
This air path is also dispersive, but the dispersion of air is so
small compared to the dispersion of fibers at these wave-
lengths that it can be neglected. If we consider the interfer-
ometer as a linear system, we can simply replace the differ-
ent dispersive elements, excluding the sample(!), in either
branch by a single effective dispersive element, indicated as
a fiber. As a result the system can be modeled using single
dispersive elements in both branches together with a disper-
sive sample in the signal branch as schematically depicted in
Fig. 8. With this the amplitude and phase maps can be cal-
culated using the experimentally obtained parameters. Al-
though Eqs.(3) and (4) describe propagation in one dimen-
sion, two dimensional maps can be calculated by using the
modal distribution as depicted in Fig. 3(b) for each horizon-
tal line as input. This approach is valid for systems where the
different modes are sufficiently far separated in Fourier space
to allow retrieval of the individual mode profiles.

Time-resolved PSTM allows a direct determination of the
central wavelength and the group velocity for individual
modes. As a result, theb and b8 are also known for both
modes. However, it may be expected that the pattern of
phase singularities and its time dependence as presented in
Fig. 7 yield direct information on the GVD. The positions at
which singularities occur are a direct measure for the phase
difference between the modes. Be aware that the exact ex-
perimental configuration influences the observed optical
phase and as such determines which of the terms in Eq.(4)

FIG. 7. (Color) Measured distance between subsequent phase
singularities as a function of reference time. The horizontal axis
depicts the number of a singularity, which corresponds to an effec-
tive phase difference between the two modes ofp as illustrated in
Fig. 6(b). The first singularity visible in Fig. 4(b) (see arrow) is used
as the reference point and numbered as 1. Subsequent measure-
ments are lettered corresponding to the frames used in Fig. 4. It is
striking to observe that the distance between individual singularities
varies within one measurement frame in sharp contrast with the
expectation put forward in Fig. 6. Furthermore, this separation be-
tween singularities also shows a dependence on the reference time.

FIG. 8. Mach-Zehnder model for the time resolved photon scan-
ning tunneling microscope. The fiber length differenceDzfiber be-
tween the two arms is compensated by the air path length difference
Dzair. Heterodyne detection is applied, using acousto-optic modula-
tion of the light in the reference branch. The resulting interference
signal is measured with a LIA and allows one to extract the ampli-
tude and phase of the local optical field: AO, acousto-optic modu-
lator; and LIA, lock-in amplifier.
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are dominant. Insertion of our experimental parameters into
Eq. (4) shows that in our experiment the observed phase is
dominated by the last term of Eq.(2c) and the last term of
Eq. (4), respectively. As a result we can write

Fszs,td > − v0St +
zr

vfr
−

zs

vfs
D − HG0sjr − jsd2fkr + ksg

4 + skr + ksd2 J ,

s6d

for the observed optical phase from the individual modes.
Note the similarity between the second term in this equation
and the exponent in Eq.(3). Clearly, this second term can be
fully defined with the parameters recovered from the mea-
sured optical amplitude for the individual modes. As a result,
the measured phase fringes give complete information about
the dispersion relation as can be seen when writing Eq.(6) in
terms ofb. This yields

Fszs,td > − v0t − brzr + bszs

− H2G0
2st + br8zr − bs8zsd2fbr9zr − bs9zsg

4 + f2G0sbr9zr − bs9zsdg2 J , s7d

for the individual modes. From this equation we see that the
first terms give a linear dependence of the phase, which only
depends on the central frequency of the interfering pulses in
the respective branches. The term between brackets, how-
ever, introduces a deviation from this linear behavior on the
measured phase due to the GVD in the dispersive media.
Note that almost all parameters in this term are known, as
they can be derived from the measured amplitude as given
by Eq.(3) by simply fitting a Gaussian to the pulse envelope.
The individualbs are known for the different modes in the
sample as a result of a Fourier transform. The termbrzr is of
course not exactly known, but drops out when comparing
subsequent time frames due to the fact that the dispersion in
the reference branch stays constant. However, the GVD, i.e.,
the b9’s, are unknown in Eq.(7). Note that the measured
amplitude for each mode directly gives a measure forkr
+ks for that specific mode[see Eq.(3)]. This results from the
fact thatG0 is a known constant. Subtraction of the obtained
kr +ks for the different modes therefore directly yields the
relative differenceuks,TE00−ks,TE01u. From Eq.(2b) it can also
be seen that this difference corresponds toubTE009 −bTE019 u,
which is a direct measure for the difference in GVD between
the modes. Therefore we do know the relative difference
between theb9’s for the individual modes.

We can therefore depict the phase of the individual modes
by plotting Eq.(7) using the experimentally determined pa-
rameters as a function of position on the sample. This is done
in Fig. 9. At the same time the phase differenceDF between
the modes as a function of position is plotted. Note that the
phase of the individual modes shows only a very small de-
viation from linearity. Nevertheless, this deviation from lin-
earity clearly shows up in the plotted phase difference be-
tween the modes(dotted line Fig. 9). By plotting the
measured position of the phase singularities in this graph
(indicated by crosses) it is exactly defined for which position
the change ofDF should be equal top. Note that the un-
known brzr for the phase information only gives a linear

offset in the phase and therefore does not affect the curva-
ture. Thus it has no effect on the separation between the
singularities. As theb9’s are the only free parameters that
can be adjusted to fitDF to the phase differences obtained
from the measured location of the phase singularities, it is
clear that the GVD for individual modes can be retrieved
from this measurement. Note that the linear offset has to be
adjusted at the same time to define the location of the first
singularity, but this does not affect the separation between
the individual singularities as mentioned before.

Figure 9 qualitatively explains the nonconstant distance
between singularities like the measured variation presented
in Fig. 7. In Fig. 9 we can clearly see that the phase differ-
ence is nonlinear in position. If the slope of theDF is steep,
the phase changes rapidly and therefore the beat length be-
comes short. Based on our experimental observation as indi-
cated by the crosses we expected to see a shallow slope at the
left side (tail of the pulse) which becomes steeper towards
the center of the image and then decreases again at the right
side of the image(front of the pulse). However, in the cal-
culation we do not observe the decreasing slope at larger
positions/distances for the current experimental parameters.
This is apparent from the deviation between the measured
crosses and the theoretical curve. Setting slightly different
values indicates that the model includes the observed behav-
ior as is also apparent from Eq.(7). Note that the time de-
pendence, i.e., as a function oft as is measured in successive
frames, is to first approximation linear int as can be seen in
Eq. (7). As a result theDF, as depicted in Fig. 9, to first
approximation shifts towards the right, linearly dependent on
t. And this immediately shows how the beating length

FIG. 9. (a) Calculated optical phase[Eq. (4)] for the two modes
present in our measurement as a function of position on the wave-
guide. Experimental parameters used in this calculation are given in
the text. The TE00 (solid line) and TE01 (dashed line) modes show
an almost linear behavior. Deviation from linearity is however ob-
vious when plotting the phase differenceDF between those two
modes(dotted line). Note that between subsequent locations where
singularities occur(indicated by crosses) the change forDF has to
be exactly equal top. The shape of theDF curve depends only on
the b9s for the individual modes. Therefore adjusting these param-
eters in the calculation so that the phase difference at the measured
locations of the singularities is equal top allows a direct determi-
nation of the GVD for the individual modes.
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should change in Fig. 7 as a function of measurement frame.
Note that the dependence ofjr on t introduces the deviation
from this linear dependence as can be seen in Eq.(7).

In the current experimental data the accuracy for deter-
mining the amplitude of the TE01 is limited due to its rela-
tively weak amplitude combined with the limited spectral
resolution of the time sequences. As a result the accuracy for
determining the GVD for the individual modes is limited as
certain parameters have large error margins, which also ex-
plains the deviation between the expected and measured po-
sition of the phase singularities. It is, however, clear that in
principle the demonstrated method allows the retrieval of the
amplitude information of individual modes, provided that the
modes are sufficiently separated in the Fourier domain. As a
result we can directly measure the phase and group velocity
for individual modes. From a comparison of the measured
pulse length along the waveguide, the relative difference be-
tween the GVD for the modes is determined. The position of
the phase singularities are a direct measure for the relative
phase difference between the interfering modes. It is there-
fore clear that when both modes can be accurately retrieved
from the measurement, it will be possible to retrieve the
GVD for individual modes more accurately by the demon-
strated method.

VI. CONCLUSION

In conclusion, the propagation in time of a nearly Fourier
limited laser pulse propagating through a bimodal waveguide
has been visualized by an interferometric PSTM. The local
amplitude and phase of the pulses has been retrieved so that

both the phase and group velocity could be measured locally
for both the TE00 and TE01 modes.

The measured optical amplitude shows a clear beating
pattern as a function of position along the propagation direc-
tion as a result of the interference between the two modes in
the waveguide. This beating pattern arises from the wave-
length difference between both modes. We observe intriguing
phase singularities arising from the interference. The dis-
tance between singularities is not constant and is even de-
pendent on the reference time. This observation is a direct
result of the different group velocity dispersion(GVD) ex-
perienced by the propagating modes. Extending an earlier
analytical model to incorporate multi-mode propagation
shows that it is possible to locally measure the GVD of the
structure for individual modes. As a result, interesting and
useful effects, such as pulse compression, pulse spreading,
and pulse reshaping, now become accessible in local mea-
surements. It is expected that the time resolved interferomet-
ric PSTM will in the near future be used for the local experi-
mental investigation of physical phenomena inside
(non)linear dispersive media, like integrated waveguide
structures and photonic crystals.

ACKNOWLEDGMENTS

This research is part of the strategic Research Orientation
on Advanced Photonic Structures of the MESA+ Research
Institute. Furthermore, this work is part of the research pro-
gram of the Stichting voor Fundamenteel Onderzoek der Ma-
terie [FOM, financially supported by the Nederlandse Or-
ganisatie voor Wetenschappelijk Onderzoek(NWO)].

[1] M. Born and E. Wolf,Principles of Optics(Cambridge Uni-
versity Press, Cambridge, England, 1999), pp. 14–24.

[2] I. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum.72, 1
(2001).

[3] J.C. Diels and R.W. Wolfgang,Ultrashort Laser Pulse Phe-
nomena(Academic, San Diego, 1996).

[4] J.D. Joannopoulos, R.D. Meade, and J.N. Winn,Photonic
Crystals: Molding the Flow of Light(Princeton University
Press, Princeton, NJ, 1995).

[5] Photonic Crystals and Light Localization in the 21st Century,
edited by C.M. Soukoulis, NATO Advanced Studies Institute
C: Mathematical and Physical Sciences(Kluwer Academic,
Dordrecht, The Netherlands, 2001), Vol. 563.

[6] S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos,
Phys. Rev. B62, 8212(2000).

[7] W. Nakagawaet al., J. Opt. Soc. Am. A18, 1072(2001).
[8] M. Scaloraet al., Phys. Rev. A52, 726 (1995).
[9] W. Chen and D.L. Mills, Phys. Rev. Lett.58, 160 (1987).

[10] S. Yamada, Y. Watanabe, Y. Katayama, and J.B. Cole, J. Appl.
Phys. 93, 1859(2003).

[11] X. Letartreet al., Appl. Phys. Lett.79, 2312(2001).
[12] M. Notomi et al., Phys. Rev. Lett.87, 253902(2001).
[13] E. Schwoobet al., J. Opt. Soc. Am. B19, 2403(2002).

[14] M.C. Netti et al., Appl. Phys. Lett.81, 3927(2002).
[15] K. Inoueet al., Phys. Rev. B65, 121308(2002).
[16] For a classical example, see K. Smith and L.F. Mollenauer,

Opt. Lett. 14, 1284(1989).
[17] G.H. Vander Rhodeset al., IEEE J. Sel. Top. Quantum

Electron. 6, 46 (2000).
[18] J.R. Krennet al., Phys. Rev. Lett.82, 2590(1999).
[19] M.L.M. Balistreri et al., Opt. Lett. 24, 1829(1999).
[20] P.L. Phillipset al., J. Appl. Phys.85, 6337(1999).
[21] C. Chicanneet al., Phys. Rev. Lett.88, 097402(2002).
[22] S.I. Bozhevolnyiet al., Phys. Rev. B66, 235204(2002).
[23] K. Okamotoet al., Appl. Phys. Lett.82, 1676(2003).
[24] M. Vaez-Iravani and R. Toledo-Crow, Appl. Phys. Lett.62,

1044 (1992).
[25] M.L.M. Balistreri, J.P. Korterik, L. Kuipers, and N.F. van

Hulst, Phys. Rev. Lett.85, 294 (2000).
[26] E. Flücket al., J. Microsc. 202, 104 (2001).
[27] M.L.M. Balistreri, J.P. Korterik, L. Kuipers, and N.F. van

Hulst, J. Lightwave Technol.19, 1169(2001).
[28] A. Nesci, R. Dändliker, M. Salt, and H.P. Herzig, Opt.

Commun. 205, 229 (2002).
[29] M.L.M. Balistreri et al., Science294, 1080(2001).
[30] H. Gersen, J.P. Korterik, N.F. van Hulst, and L. Kuipers, Phys.

PHASE MAPPING OF ULTRASHORT PULSES IN… PHYSICAL REVIEW E 70, 066609(2004)

066609-11



Rev. E 68, 026604(2003).
[31] Near-Field Optics, edited by D.W. Pohl and C. Courjon,

NATO Advanced Studies Institute, Series E: Applied Sci-
ences(Kluwer Academic, Dordrecht, The Netherlands, 1993),
Vol. 242.

[32] J.R. Krenn, Nat. Mater.2, 210 (2003).
[33] R.H.J. Kop and R. Sprik, Rev. Sci. Instrum.66, 5459(1995),

and references therein.
[34] A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, Phys. Rev.

Lett. 83, 2942(1999).

GERSENet al. PHYSICAL REVIEW E 70, 066609(2004)

066609-12


